Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
In this article, we provide an original systematic global-in-time analysis of mean field type control problems on ℝnwith generic cost functions allowing quadratic growth by a novel “lifting” approach which is not the same as the traditional lifting. As an alternative to the recent popular analytical method of tackling master equations, we resolve the control problem in a proper Hilbert subspace of the whole space ofL2random variables, it can be regarded as a tangent space attached at the initial probability measure. The problem is linked to the global solvability of the Hilbert-space-valued forward–backward stochastic differential equation (FBSDE), which is solved by variational techniques here. We also rely on the Jacobian flow of the solution to this FBSDE to establish the regularity of the value function, including its linearly functional differentiability, which leads to the classical wellposedness of the Bellman equation. Together with the linear functional derivatives and the gradient of the linear functional derivatives of the solution to the FBSDE, we also obtain the classical wellposedness of the master equation. Our current approach imposes structural conditions directly on the cost functions. The contributions of adopting this framework in our study are twofold: (i) compared with imposing conditions on Hamiltonian, the structural conditions imposed in this work are easily verified, and less demanding on the cost functions while solving the master equation; and (ii) when the cost functions are not convex in the state variable or there is a lack of monotonicity of cost functions, an accurate lifespan can be provided for the local existence, which may not be that small in many cases.more » « lessFree, publicly-accessible full text available January 1, 2026
-
In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations.more » « less
-
We study the deterministic control problem in the Wasserstein space, following the recent works of Bonnet and Frankowska, but with a new approach. One of the major advantages of our approach is that it reconciles the closed loop and the open loop approaches, without the technicalities of the traditional feedback control methodology. It allows also to embed the control problem in the Wasserstein space into a control problem in a Hilbert space, similar to the lifting method introduced by P. L. Lions, used already in our previous works. The Hilbert space is different from that proposed by P. L. Lions, and it allows to recover the control problem in the Wasserstein space as a particular case.more » « less
An official website of the United States government
